
THURSE OF TORONOMY OF THE PROPERTY OF THE PROP

Olimpiadi Italiane di Astronomia 2020

Corso di preparazione alla Finale Nazionale

Prova Pratica – Gli anelli di Saturno

Si consideri la foto del pianeta Saturno qui in alto. Calcolare:

- 1. i periodi di rivoluzione al bordo interno (indicato dalla freccia) ed esterno del sistema di anelli, trascurando la massa degli anelli rispetto a quella di Saturno;
- 2. la differenza di velocità tangenziale tra il bordo interno e quello esterno del sistema di anelli;
- 3. la massa totale dell'anello contenuta tra il bordo interno e quello esterno, sapendo che è formato quasi interamente da ghiaccio di acqua, che solo una frazione pari a circa un millesimo del suo volume è effettivamente occupato da materia e assumendo, in prima approssimazione, una densità uniforme e uno spessore medio di circa 500 m.

Nelle misure effettuate con il righello si consideri una precisione di 0.1 cm

Soluzione

1. Misuriamo con un righello le dimensioni del sistema di anelli e di Saturno. Poiché non è facile definire il centro di Saturno e la posizione del bordo interno dell'anello opposto a quello indicato dalla freccia, per una maggiore precisione misuriamo il diametro del pianeta $D_{Saturno}$, il diametro totale del sistema di anelli $DA_{esterno}$ e la sua larghezza L_{anelli} tra il bordo esterno in basso a sinistra e la posizione indicata dalla freccia.

$$D_{Saturno} \simeq 8.6 \ cm$$
 $DA_{esterno} \simeq 19.5 \ cm$ $L_{anelli} \simeq 4.5 \ cm$

Il diametro interno $DA_{interno}$ del sistema di anelli vale quindi:

$$DA_{interno} = DA_{esterno} - 2 \cdot L_{anelli} \simeq 19.5 \text{ cm} - 9.0 \text{ cm} \simeq 10.5 \text{ cm}$$

Poiché il raggio equatoriale **R** di Saturno è di 60270 km, il fattore di conversione **K** tra le lunghezze misurate in cm sulla foto e le lunghezze reali in km è:

$$K = \frac{2 R}{8.6} \simeq 14 \cdot 10^3 \ km$$

Da cui ricaviamo il raggio esterno RA_E ed interno RA_I del sistema di anelli:

$$RA_E = \frac{K \cdot DA_{esterno}}{2} \simeq 14 \cdot 10^4 \ km$$
 $RA_I = \frac{K \cdot DA_{interno}}{2} \simeq 7.4 \cdot 10^4 \ km$

I periodi di rivoluzione ai bordi esterno T_E e interno T_I si ricavano dalla III legge di Keplero:

$$T = \sqrt{\frac{4 \pi^2 R^3}{G M_{Saturno}}}$$

$$T_E \simeq \sqrt{\frac{4 \pi^2 \cdot 2.7 \cdot 10^{24}}{6.674 \cdot 10^{-11} \cdot 5.685 \cdot 10^{26}}} \simeq 53 \cdot 10^3 \, s \simeq 15 \, h$$

$$T_I \simeq \sqrt{\frac{4 \pi^2 \cdot 4.1 \cdot 10^{23}}{6.674 \cdot 10^{-11} \cdot 5.685 \cdot 10^{26}}} \simeq 21 \cdot 10^3 \, s \simeq 5.7 \, h$$

2. La velocità tangenziale è data da: $v = \frac{2 \pi R}{T}$; sostituendo otteniamo:

$$v_E = \frac{2 \pi R A_E}{T_E} \simeq \frac{2 \pi \cdot 14 \cdot 10^4 \, km}{53 \cdot 10^3 \, s} \simeq 17 \, \frac{km}{s}$$
$$v_I = \frac{2 \pi R A_I}{T_I} \simeq \frac{2 \pi \cdot 7.4 \cdot 10^4 \, km}{21 \cdot 10^3 \, s} \simeq 22 \, \frac{km}{s}$$

Quindi la differenza di velocità ΔV tra i due bordi vale:

$$\Delta V = v_E - v_i \simeq 5 \frac{km}{s}$$

3. Detto **h** lo spessore medio del sistema di anelli di Saturno il suo volume V_{anelli} vale:

$$V_{anelli} = \pi \cdot RA_E^2 \cdot h - \pi \cdot RA_I^2 \cdot h = \pi \cdot h \left(RA_E^2 - RA_I^2 \right) \simeq 2.2 \cdot 10^{10} \ km^3$$

= $2.2 \cdot 10^{19} \ m^3$

Poiché la densità del ghiaccio è: $\rho_{ghiaccio} \simeq 917 \, \frac{kg}{m^3}$, la massa totale del sistema di anelli M_{anelli} compresa tra il bordo esterno visibile nella foto e il bordo interno indicato dalla freccia, ricordando che solo un millesimo (10⁻³) del volume è occupato da materia è:

$$M_{anelli} = V_{anelli} \cdot \rho_{ghiaccio} \cdot 10^{-3} \simeq 2.2 \cdot 10^{19} \, m^3 \cdot 917 \, \frac{kg}{m^3} \cdot 10^{-3} \simeq 2.0 \cdot 10^{19} \, kg$$

Nota: la soluzione di questo problema implica la lettura di lunghezze con un righello. Ovviamente i valori ottenuti per $D_{Saturno}$, $DA_{esterno}$, L_{anelli} e $DA_{interno}$, dipendono dalle dimensioni della stampa della foto di Saturno. Tuttavia, una volta calcolato il fattore di scala K le dimensioni ricavate in km diventano indipendenti dalle dimensioni della stampa e così pure tutte le grandezze successivamente ottenute.